Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(19): 6754-6766, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32184354

RESUMO

The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cianobactérias/genética , Mutação de Sentido Incorreto , Fotorreceptores Microbianos/genética , Fitocromo/genética
2.
J Colloid Interface Sci ; 267(1): 127-31, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14554175

RESUMO

TiO(2) thin films were prepared using the dip-coating method with a polymeric sol including additives such as Al, W, and Al+W to examine two major properties: photocatalysis and hydrophilicity. W-doped films showed the best photocatalytic efficiency, while Al-doped film was poorer than undoped samples. However, good hydrophilicity in terms of saturation contact angle and surface conversion rate was found in Al- and (Al+W)-mixed-doped films. It was found that deep electron-hole traps and high surface acidity of W-doped TiO(2) thin film were the major factors in high photocatalytic efficiency. In addition, low surface acidities of Al- and (Al+W)-doped films provided better hydrophilicity than W-doped ones. However, the amount of [Ti(3+)] point defects on the surface was another major factor, probably the most important, in getting the best hydrophilicity. Conclusively, it seemed that many parts of the photocatalysis mechanism depend more on bulk-related properties than do those of hydrophilicity, which can be defined as an interfacial (surface) or near-surface-restricted process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...